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Fig. 1. Overview of the UWSegDepth pipeline. Given an input image (a), instance masks (b) are generated by BARIS-

ERA [10], and a depth map (c) is estimated using TRUDepth [9] enhanced with SADDER. UWSegDepth then computes 

the average depth for each segmented object to produce the final output (d). 

Abstract 
 

Accurate depth estimation and object recognition are 

essential for underwater tasks such as navigation, habitat 

monitoring, and exploration. However, light scattering, 

color attenuation, and water turbidity make it difficult to 

estimate depth from a single image. We propose 

SADDER (Segmentation-Augmented Differential Depth 

Estimation Regressor), a lightweight module that 

improves depth estimates by correcting residual errors 

guided by instance segmentation. We also introduce 

UWSegDepth, a straightforward post-processing method 

that calculates the average depth of each segmented 

object, adding object-level structure to pixel-wise 

predictions. Experiments on the FLSea benchmark show 

clear improvements, especially in shallow and murky 

conditions. The proposed method provides reliable depth 

estimates and clear object-level information, making it 

suitable for practical underwater applications. 

 

Keywords: Underwater Scenes, Depth Estimation, Instance 

Segmentation, Object-Level Depth Estimation. 

 

 

 
 

1. INTRODUCTION 
 

Accurate perception of underwater environments is 

critical for a wide range of marine applications, including 

environmental monitoring [1], autonomous navigation 

[2], and 3D scene reconstruction [3]. In particular, 

monocular depth estimation and instance segmentation 

are key to interpreting scene structure and identifying 

objects [4, 5]. However, underwater vision remains 

highly challenging due to environment-specific issues 

such as light scattering, color attenuation, and turbidity, 

which can severely affect both depth accuracy and object 

recognition. 

In underwater depth estimation tasks, traditional 

methods based on image formation models (IFMs) [6, 7] 

often struggle with varying environmental conditions and 

depend on manually tuned physical parameters. More 

recent learning-based methods, such as UDepth [8], 

adopt classification-based depth estimation with adaptive 

binning strategies. These methods show promising 

results by using several lightweight architectures and 

incorporating wavelength-sensitive features. Other 

approaches, like TRUDepth [9], integrate sparse depth 

priors from visual triangulation to improve scale 

consistency, even when training data is limited or lacks 

depth calibration. Together, these developments reflect 



 
Fig. 2. Overview of the proposed Segmentation-Augmented Differential Depth Estimation Regressor (SADDER). The 

proposed method refines TRUDepth predictions using SADDER, which leverages segmentation features 𝐹𝑠 and deep 

features 𝐹𝑑 to correct the initial depth 𝑑̂𝑖𝑛𝑖𝑡 , yielding sharper and more accurate depth maps. 

 

steady progress in addressing the unique challenges of 

underwater depth estimation. 

Nevertheless, such methods still struggle in regions 

with low visibility or complex geometry, where 

monocular information alone is unreliable. While depth 

estimation captures scene structure, recognizing and 

separating objects is equally important for tasks such as 

object interaction and spatial reasoning. This highlights 

the need to incorporate segmentation information into the 

depth estimation process. Recent work in underwater 

instance segmentation, such as BARIS-ERA [10], 

addresses lighting variability and environmental shifts by 

combining structural refinement with fixed domain-

adaptive features, allowing for more reliable mask 

predictions under challenging conditions. 

To address the limitations of these methods and 

bring together geometric and semantic information, we 

propose a two-stage framework for underwater object-

level depth estimation (Fig. 1). First, we introduce the 

Segmentation-Augmented Differential Depth Estimation 

Regressor (SADDER), a lightweight refinement module 

that uses instance segmentation features to correct 

residual errors in initial depth maps. Built on TRUDepth, 

SADDER improves results in occluded areas and along 

object boundaries by applying detailed corrections 

guided by segmentation priors. Second, we present 

UWSegDepth, an object-level method that combines 

SADDER-refined depth maps with instance masks from 

BARIS-ERA, assigning an average depth value to each 

segmented object. We evaluate our approach on the 

FLSea dataset [11], a diverse benchmark of shallow-

water scenes. Our method consistently performs better 

than existing baselines in both shallow and full-depth 

ranges, producing accurate depth estimates and clear 

object separation from a single underwater image. The 

main contributions of this work are summarized as 

follows: 

1) We propose SADDER, a segmentation-augmented 

depth refinement module that improves the depth 

estimates produced by TRUDepth under 

challenging underwater conditions. 

2) We introduce UWSegDepth, a lightweight method 

that combines SADDER-refined depth with 

BARIS-ERA instance masks to estimate object-

level depth without additional training. 

3) We demonstrate significant improvements on the 

FLSea benchmark, both quantitatively and 

qualitatively, under varying levels of visibility and 

scene complexity. 

 

2. RELATED WORK 
 

    The integration of depth estimation and instance 

segmentation has demonstrated strong potential for 

enhancing scene understanding, especially in challenging 

environments. However, underwater applications remain 

relatively underexplored due to the unique visual 

degradation caused by light attenuation, scattering, and 

low texture. In this section, we review two key areas of 

related work: underwater depth estimation, and object-

level depth estimation in degraded visual environments. 

 

2.1. Underwater Depth Estimation 
 

    Monocular depth estimation in underwater scenes 

presents persistent challenges due to limited visibility, 

optical distortions, and a lack of ground-truth data. 

Traditional methods based on image formation models 

are sensitive to physical assumptions and often fail under 

changing environmental conditions. While recent 

learning-based methods have shown notable progress, 

accurate prediction remains difficult in complex or 

degraded settings. For instance, classification-based 

models incorporating spectral sensitivity and adaptive 

discretization, such as UDepth [8] have improved 

robustness in many scenarios. TRUDepth [9] further 

addresses scale ambiguity by introducing sparse depth 

constraints based on visual triangulation. Despite these 

advances, most existing approaches rely solely on image 

features without integrating object-level information, 

which often leads to blurred depth boundaries and poor 

generalization in scenes with occlusion or fine-grained 

structure. 



 
Fig. 3. Architecture of the proposed Segmentation-Augmented Differential Depth Estimation Regressor (SADDER). 

The model refines an initial depth map by predicting a residual correction using segmentation features. 

 

2.2. Object-Level Depth Estimation 
 

    To bridge semantic and geometric understanding, 

recent studies in terrestrial and low-light vision have 

explored the integration of depth estimation and instance 

segmentation. Methods such as Panoptic-DepthLab [4] 

utilize a unified architecture to jointly predict 

segmentation masks and depth maps, facilitating more 

accurate 3D scene reconstruction and foreground-

background separation. In low-light environments, 

models like Panoptic-LMFFNet [5] incorporate image 

enhancement techniques and domain adaptation to 

remain effective under varying illumination. These 

methods often apply straightforward strategies, such as 

averaging depth values within instance masks, to assign 

object-level depth estimates. The results suggest that 

integrating segmentation with geometric data enhances 

occlusion handling, object-level distinction, and spatial 

understanding. However, their application to underwater 

environments remains underexplored. 

 

3. PROPOSED METHOD 
 

This section presents a framework for pixel-wise 

and object-level depth estimation in underwater 

environments. The method aims to improve monocular 

depth estimation through semantic information and 

extend depth inference to the object level. The framework 

comprises two stages: segmentation-augmented depth 

refinement using SADDER, and object-level depth 

estimation based on dense predictions. 

 

3.1. Segmentation-Augmented Depth Estimation 
 

We build upon TRUDepth [9], a classification-

based monocular depth estimation model that employs 

adaptive binning and a compact vision transformer 

architecture. Although TRUDepth achieves competitive 

performance under challenging underwater conditions, it 

often fails to preserve geometric boundaries, particularly 

in the presence of light scattering or occlusion. 

To address these issues, we propose a novel   

depth refinement module, SADDER (Segmentation-

Augmented Differential Depth Estimation Regressor), 

which focuses on predicting the residual between the 

initial depth estimate and the ground truth. As shown in 

Fig. 2, SADDER takes three inputs: the initial predicted 

depth map 𝑑̂𝑖𝑛𝑖𝑡 , segmentation features 𝐹𝑠, and deep 

features 𝐹𝑑 from the encoder-decoder backbone. By 

incorporating instance segmentation features into the 

refinement process, the method enhances estimation 

accuracy, particularly in regions affected by occlusion or 

boundary ambiguity. 

As illustrated in Fig. 3, these features are 

concatenated and fed into a lightweight modified vision 

transformer (mViT), which predicts the likelihood of 

each pixel belonging to one of several differential depth 

bins. These bins represent the deviation of depth values 

from the initial estimate, encompassing both positive and 

negative offsets. Based on the quantitative results of 

TRUDepth [9], we observed that the per-pixel depth error 

typically falls within 0.5 meters. Therefore, in our 

implementation, the differential depth Δ𝑑 is constrained 

to a narrow interval of approximately [−0.5, +0.5] meters. 

meters. This bounded range enables SADDER to refine 

depth estimates effectively while reducing the risk of 

large corrections that may lead to instability. 

Subsequently, a softmax layer transforms the 

predicted logits into probability scores 𝑝𝑖  over 𝑁 

discrete bins, and the differential depth ∆𝑑 is computed 

as a weighted sum of differential bin centers 𝑐𝑖  using 

these probabilities: 
 

                      ∆𝑑(𝑥, 𝑦) = ∑ 𝑐𝑖 ∗ 𝑝𝑖(𝑥, 𝑦)

𝑁

𝑖=1

                    (1) 

 

This design enables precise, localized refinement of 

the depth map by incorporating both segmentation priors 

and spatial features, particularly in regions where 

monocular depth estimation is intrinsically uncertain. 

SADDER thus generates a differential depth map Δ𝑑 , 

which is applied as a correction to the initial estimate. 

The final depth output is computed as: 
 

                            𝑑̂𝑟𝑒𝑓𝑖𝑛𝑒𝑑 = 𝑑̂𝑖𝑛𝑖𝑡 + Δ𝑑                            (2) 
 

This formulation allows the model to concentrate on 

correcting systematic errors, particularly near object 

boundaries or in visually complex regions where 

monocular information may be insufficient. During 

training, the parameters of the original TRUDepth model 

are kept frozen. Only the SADDER module, including its 

convolutional layers and the modified vision transformer 

(mViT), is trained. This training strategy reduces 

computational cost while ensuring that SADDER refines, 

rather than overrides, the baseline depth estimates. 



 
Fig. 4. Overview of the UWSegDepth pipeline. Instance masks from BARIS-ERA and refined depth from SADDER 

are combined to generate object-level depth estimates via spatial averaging. 

 

To train SADDER effectively, we adopt a two-part 

loss function that balances metric precision and structural 

consistency, following the design in TRUDepth [9]. The 

total loss is: 
 

                   ℒ𝑡𝑜𝑡𝑎𝑙 = λ1 ⋅ ℒRMSE + λ2 ⋅ ℒSILog ,                (3) 
 

where 𝜆1 = 0.3 and 𝜆2 = 0.6 control the contribution 

of each term. The RMSE term encourages accurate per-

pixel predictions: 
 

                       ℒRMSE = √
1

𝑁
∑(𝑑̂𝑖 − 𝑑𝑖)

2
𝑁

𝑖=1

,                     (4) 

 

while the SILog term ensures scale-invariant consistency: 
 

            ℒSILog = 𝛽 ∙ √
1

𝑁
∑ 𝑔𝑖

2

𝑁

𝑖=1

−
λ

𝑁2
(∑ 𝑔𝑖

𝑁

𝑖=1

)

2

,         (5) 

 

where 𝑔𝑖 = log(𝑑̂𝑖) − log(𝑑𝑖) , 𝛽 = 10 , λ = 0.85 . 

This formulation is particularly effective in underwater 

environments, where absolute depth may be unreliable 

but structural information remains valuable. 

 

3.2. UWSegDepth: Object-Level Depth Estimation 
 

While SADDER improves pixel-wise depth 

estimation, many downstream applications require 

object-level spatial understanding rather than per-pixel 

depth alone. Inspired by recent advances in terrestrial 

vision [4, 5], we adopt a straightforward aggregation 

scheme that combines refined depth maps with instance 

segmentation results to estimate object-level depth. This 

approach facilitates coherent spatial interpretation of 

individual objects and their relative positions, which is 

particularly advantageous for underwater tasks such as 

autonomous navigation, ecological monitoring, and 

marine robotics. 

To achieve object-level depth estimation in 

underwater scenes, we propose UWSegDepth, an object-

level depth estimation framework that integrates the 

outputs of two previously introduced models: the 

instance segmentation model BARIS-ERA [10] and the 

depth estimation model TRUDepth refined with 

SADDER. Instead of modifying existing architectures or 

employing joint training, the proposed method applies a 

post-processing procedure that combines semantic and 

geometric information at the instance level. 

As illustrated in Fig. 4, given an input image, 

instance masks are obtained from BARIS-ERA, and a 

dense depth map is generated by TRUDepth with 

SADDER. For each object, its depth is computed by 

averaging the pixel-wise depth values within its 

corresponding segmentation mask: 
 

                       𝑑𝑘 =
1

|ℳ𝑘|
∑ 𝑑̂(𝑥, 𝑦)

(𝑥,𝑦)∈ℳ𝑘

 ,                    (6) 

 

Here, ℳ𝑘  denotes the binary mask of the 𝑘 -th 

instance and 𝑑̂(𝑥, 𝑦)  is the predicted depth at pixel 
(𝑥, 𝑦) . Instances with insufficient valid pixels are 

excluded to ensure numerical stability. This averaging 

process is both computationally efficient and less 

sensitive to local noise, producing spatially consistent 

and metrically reliable object-level depth estimates. 

The final output provides each segmented object 

with both semantic labels and estimated distances, 

facilitating structured scene interpretation. This modular 

design allows for straightforward integration with other 

segmentation or depth estimation methods, offering a 

practical approach for object-level depth analysis in 

underwater environments. 



 
Fig. 5. Qualitative comparison of depth estimation results on the FLSea dataset, showing that our method yields more 

reliable predictions under challenging underwater conditions. 
 

4. EXPERIMENTS 
 

For underwater depth estimation, we conduct a 

series of experiments on the FLSea dataset [11] to 

evaluate the effectiveness of our proposed SADDER 

module and UWSegDepth framework. This section 

presents our experimental setup, quantitative and 

qualitative results. 

 

4.1. Dataset and Evaluation Metrics 
 

Dataset. The FLSea dataset serves as the 

benchmark for our evaluation. It contains 22,451 RGB-

depth image pairs collected from 12 shallow-water 

environments, with depth typically ranging up to 10 

meters. We follow the standard split introduced in prior 

work [9], using 10 sites for training and 2 unseen sites 

(u_canyon and sub_pier) for testing to ensure spatial 

separation. Depth maps are generated using Agisoft 

Metashape, a photogrammetric tool that reconstructs 

metric depth from multi-view underwater footage. To 

preserve natural underwater degradation characteristics, 

we use the raw RGB images without color correction. 

Evaluation Metrics. To evaluate the quality of the 

predicted depth maps, we adopt a set of standard 

quantitative metrics, following prior work [9]. All 

metrics are computed over the test set and reported as 

mean or median accuracy. The error metrics between the 

predicted 𝑑̂ and ground truth depth 𝑑 are calculated as 

follows: 

 

                   𝑀𝐴𝑅𝐸(𝑑̂𝑖 , 𝑑𝑖) =
1

𝑁
∑

|𝑑̂𝑖 − 𝑑𝑖|

|𝑑𝑖|

𝑁

𝑖

 ,               (7) 

 

          𝑅𝑀𝑆𝐸𝐿𝑖𝑛𝑒𝑎𝑟(𝑑̂𝑖 , 𝑑𝑖) = √
1

𝑁
∑(𝑑̂𝑖 − 𝑑𝑖)

2
𝑁

𝑖

,         (8) 

 

Table 1. Quantitative comparison with state-of-the-art methods 

on the FLSea test set, reported using MEAN accuracy. 

Range Method 
RMSE 

(Linear) 

RMSE 

(Log) 

RMSE 

(SILog) 
MARE 

𝐹𝑢𝑙𝑙 

𝑟𝑎𝑛𝑔𝑒 

TRUDepth [9] 0.4711 0.0939 0.0924 0.0414 

+ Ours 0.4424 0.0885 0.0866 0.0396 

∆𝑂𝑢𝑟𝑠  6.09% 5.75% 6.28% 4.35% 

𝑑 < 5 𝑚 

TRUDepth [9] 0.2108 0.0678 0.0667 0.0339 

+ Ours 0.1877 0.0635 0.0612 0.0334 

∆𝑂𝑢𝑟𝑠  10.96% 6.34% 8.25% 1.47% 

𝑑 < 1 𝑚 

TRUDepth [9] 0.1119 0.0943 0.0584 0.0861 

+ Ours 0.0895 0.0833 0.0510 0.0736 

∆𝑂𝑢𝑟𝑠  20.02% 11.66% 12.67% 14.52% 

 

 𝑅𝑀𝑆𝐸𝐿𝑜𝑔(𝑑̂𝑖 , 𝑑𝑖) = √
1

𝑁
∑(log(𝑑̂𝑖) − log(𝑑𝑖))

2
𝑁

𝑖

,   (9) 

𝑅𝑀𝑆𝐸𝑆𝐼𝐿𝑜𝑔(𝑑̂𝑖 , 𝑑𝑖) =                                                                

          √
1

𝑁
∑ (log(𝑑̂𝑖) − log(𝑑𝑖) + 𝛼(𝑑̂𝑖 , 𝑑𝑖))

2
𝑁

𝑖

,      (10) 

where 𝛼(𝑑̂𝑖 , 𝑑𝑖) =
1

𝑁
∑ (log(𝑑𝑖) − log(𝑑̂𝑖))𝑁

𝑖  is the term 

that makes the error scale invariant [17]. 
 

4.2. Implementation Details 
 

We build upon the TRUDepth architecture using a 

MobileNetV2 [12] backbone and a pretrained vision 

transformer. The SADDER module is trained using 

PyTorch [13] on an NVIDIA Titan RTX GPU. Following 

[14], we initialize SADDER with a zero-initialization 

strategy to stabilize learning. The AdamW optimizer [15] 

is used with a base learning rate of 10−5  and 

exponential decay (factor 0.9). Batch size is set to 6. Data 

augmentations include horizontal flips, brightness 

scaling, color jitter, and depth scaling. For supervision, 

200 sparse prior points are randomly sampled from multi-

view consistency to guide depth learning, accounting for 

0.26% of pixels at 320 × 240 resolution. 



Table 2. Quantitative comparison with state-of-the-art methods 

on the FLSea test set, reported using MEDIAN accuracy. 

Range Method 
RMSE 

(Linear) 

RMSE 

(Log) 

RMSE 

(SILog) 
MARE 

𝐹𝑢𝑙𝑙 

𝑟𝑎𝑛𝑔𝑒 

TRUDepth [9] 0.4235 0.0835 0.0826 0.0387 

+ Ours 0.3608 0.0771 0.0757 0.0365 

∆𝑂𝑢𝑟𝑠  14.80% 7.66% 8.35% 5.68% 

𝑑 < 5 𝑚 

TRUDepth [9] 0.1933 0.0610 0.0605 0.0306 

+ Ours 0.1658 0.0578 0.0557 0.0306 

∆𝑂𝑢𝑟𝑠  14.23% 5.25% 7.93% 0% 

𝑑 < 1 𝑚 

TRUDepth [9] 0.0416 0.0442 0.0326 0.0298 

+ Ours 0.0392 0.0419 0.0326 0.0289 

∆𝑂𝑢𝑟𝑠  5.77% 5.20% 0% 3.02% 

 

4.3. Quantitative Comparison 
 

We evaluate our method on the FLSea test set 

against the baseline TRUDepth [9] across three depth 

intervals: 𝐹𝑢𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 , 𝑑 < 5 𝑚 , and 𝑑 < 1 𝑚 . We 

adopt four standard metrics: RMSE (Linear), RMSE 

(Log), RMSE (SILog), and MARE. Both mean and 

median performance are reported in Tables 1 and 2, 

respectively. 

As shown in Table 1, our method significantly 

improves upon TRUDepth, particularly in shallow 

regions where accurate estimation is most challenging. 

We achieve up to 20.02% improvement in RMSE 

(Linear) for depths less than 1 meter. The results indicate 

that our segmentation-augmented refinement strategy 

effectively corrects boundary errors and enhances 

robustness in turbid conditions. Table 2 confirms the 

stability of our approach. Our model improves the 

median RMSE (Linear) by 14.80% in the 𝐹𝑢𝑙𝑙 𝑟𝑎𝑛𝑔𝑒, 

with consistent gains across all metrics. 

A simple approach to improving underwater depth 

estimation is to cascade an underwater image 

enhancement (UIE) model with a depth estimation 

network. To further examine the effectiveness of our 

SADDER module, we compare it with this UIE-based 

strategy using CCL-Net [16]. As shown in Table 3, 

SADDER consistently outperforms the UIE baseline 

across all depth intervals. While UIE may enhance image 

appearance, it does not reliably improve depth accuracy. 

In contrast, SADDER directly refines depth predictions 

using segmentation priors, leading to more precise and 

metrically consistent results. 

These results demonstrate that SADDER is a 

lightweight and effective enhancement for underwater 

monocular depth estimation, achieving substantial 

improvements with minimal increase in model 

complexity and without requiring joint training. 

 

4.4. Qualitative Results 
 

Fig. 5 and Fig. 6 present visual comparisons of depth 

predictions from TRUDepth and our SADDER-

augmented model. Our method yields sharper boundaries 

and more structurally consistent depth transitions, 

especially in regions affected by occlusion, scattering, or 

low visibility. Compared to the baseline, SADDER better 

preserves geometric contours and improves prediction 

 
Fig. 6. More qualitative comparison of depth estimation results 

on the FLSea dataset. 

 
Table 3. Comparison between our SADDER and UIE-based 

strategy for enhancing underwater depth estimation on the 

FLSea test set, reported using MEAN accuracy. 

Range Method 
RMSE 

(Linear) 

RMSE 

(Log) 

RMSE 

(SILog) 
MARE 

𝐹𝑢𝑙𝑙 

𝑟𝑎𝑛𝑔𝑒 

CCL-Net [16] 0.5015 0.1001 0.0985 0.0448 

SADDER 0.4424 0.0885 0.0866 0.0396 

𝑑 < 5 𝑚 
CCL-Net [16] 0.2249 0.0731 0.0716 0.0372 

SADDER 0.1877 0.0635 0.0612 0.0334 

𝑑 < 1 𝑚 
CCL-Net [16] 0.1119 0.0943 0.0584 0.0861 

SADDER 0.0895 0.0833 0.0510 0.0736 

 

stability in degraded underwater environments, 

demonstrating the effectiveness of segmentation-

augmented refinement. 

 

4.5. Object-Level Depth Estimation Results 
 

We evaluate our UWSegDepth framework by 

assigning mean depth values to segmented objects from 

BARIS-ERA, enabling object-level spatial 

understanding without additional training. As shown in 

Fig. 7 and Fig. 8, this lightweight fusion yields 

interpretable depth annotations across diverse 

underwater targets such as fish, reefs, and divers. 

Compared to raw depth maps, our object-level outputs 

provide clearer semantic boundaries and structured 

spatial information. Despite the simplicity of mean 

pooling, it proves effective for most scenarios and robust 

to noise. This integration of SADDER and instance 

fusion enhances both metric accuracy and semantic 

interpretability, supporting downstream tasks like 

obstacle assessment and marine habitat analysis. 

 

4.6. Computational Efficiency 
 

    We evaluate the runtime of each component in the 

UWSegDepth pipeline to assess its practicality for 

deployment. As shown in Table 4, all measurements were 

conducted on an NVIDIA Titan RTX GPU with a batch 

size of 1, and results are reported in frames per second 

(FPS). The full pipeline, including instance segmentation, 

sparse depth prior generation, TRUDepth with SADDER 

refinement, and object-level post-processing, runs at 

0.327 FPS. While the current implementation is not 

suited for real-time applications, it remains feasible for 

offline processing or tasks where frame-wise analysis is  



 
Fig. 7. Qualitative results of our UWSegDepth. The integration of instance segmentation and depth prediction allows 

for interpretable object-level depth estimation in underwater environments. 

 

sufficient. To further improve computational efficiency, 

future work may investigate model compression 

techniques and optimized GPU-based implementations. 

 

5. CONCLUSION 
 

In this work, we present a unified framework for 

underwater depth estimation and object-level scene 

understanding. We first introduce the Segmentation-

Augmented Differential Depth Estimation Regressor 

(SADDER), a lightweight refinement module that 

improves monocular depth estimation by predicting 

residual errors informed by instance segmentation 

features. Built upon TRUDepth, SADDER enhances 

accuracy, particularly near object boundaries and in 

visually degraded regions, without substantially 

increasing model complexity. 

To bridge the gap between pixel-wise depth and 

object-level reasoning, we propose UWSegDepth, an 

object-level depth estimation framework that integrates 

SADDER-refined depth maps with instance masks from 

BARIS-ERA. By applying a simple mean aggregation 

within each mask, UWSegDepth assigns representative 

depth values to segmented objects. This efficient post-

processing approach improves geometric consistency 

and semantic clarity, enabling accurate and structured 

interpretation of underwater scenes. 

 

Table 4. Runtime Analysis of UWSegDepth Components. 

Method FPS 

Perform Instance Segmentation 2.578       

Get Depth Prior 0.376       

Convert Depth Prior To Sparse Features 8.042       

Perform Depth Estimation 66.281       

UWSegDepth (Total) 0.327       

 

Experimental results on the FLSea dataset 

demonstrate the effectiveness of the proposed approach. 

SADDER consistently improves depth accuracy under 

challenging conditions, and the integration with instance 

segmentation enables coherent object-level depth 

estimation. Although the current runtime limits real-time 

applicability, the framework remains suitable for offline 

or low-frame-rate scenarios. The modular design offers a 

robust and extensible solution for underwater perception, 

with future work focusing on accelerating inference 

while maintaining performance. 
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