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Fig. 1. Overview of the UWSegDepth pipeline. Given an input image (a), instance masks (b) are generated by BARIS-
ERA [10], and a depth map (c) is estimated using TRUDepth [9] enhanced with SADDER. UWSegDepth then computes
the average depth for each segmented object to produce the final output (d).

Abstract

Accurate depth estimation and object recognition are
essential for underwater tasks such as navigation, habitat
monitoring, and exploration. However, light scattering,
color attenuation, and water turbidity make it difficult to
estimate depth from a single image. We propose
SADDER (Segmentation-Augmented Differential Depth
Estimation Regressor), a lightweight module that
improves depth estimates by correcting residual errors
guided by instance segmentation. We also introduce
UWSegDepth, a straightforward post-processing method
that calculates the average depth of each segmented
object, adding object-level structure to pixel-wise
predictions. Experiments on the FLSea benchmark show
clear improvements, especially in shallow and murky
conditions. The proposed method provides reliable depth
estimates and clear object-level information, making it
suitable for practical underwater applications.

Keywords: Underwater Scenes, Depth Estimation, Instance
Segmentation, Object-Level Depth Estimation.

© @

1. INTRODUCTION

Accurate perception of underwater environments is
critical for a wide range of marine applications, including
environmental monitoring [1], autonomous navigation
[2], and 3D scene reconstruction [3]. In particular,
monocular depth estimation and instance segmentation
are key to interpreting scene structure and identifying
objects [4, 5]. However, underwater vision remains
highly challenging due to environment-specific issues
such as light scattering, color attenuation, and turbidity,
which can severely affect both depth accuracy and object
recognition.

In underwater depth estimation tasks, traditional
methods based on image formation models (IFMs) [6, 7]
often struggle with varying environmental conditions and
depend on manually tuned physical parameters. More
recent learning-based methods, such as UDepth [8],
adopt classification-based depth estimation with adaptive
binning strategies. These methods show promising
results by using several lightweight architectures and
incorporating wavelength-sensitive features. Other
approaches, like TRUDepth [9], integrate sparse depth
priors from visual triangulation to improve scale
consistency, even when training data is limited or lacks
depth calibration. Together, these developments reflect
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Fig. 2. Overview of the proposed Segmentation-Augmented Differential Depth Estimation Regressor (SADDER). The
proposed method refines TRUDepth predictions using SADDER, which leverages segmentation features F; and deep
features F; to correct the initial depth d;,;,, yielding sharper and more accurate depth maps.

steady progress in addressing the unique challenges of

underwater depth estimation.

Nevertheless, such methods still struggle in regions
with low visibility or complex geometry, where
monocular information alone is unreliable. While depth
estimation captures scene structure, recognizing and
separating objects is equally important for tasks such as
object interaction and spatial reasoning. This highlights
the need to incorporate segmentation information into the
depth estimation process. Recent work in underwater
instance segmentation, such as BARIS-ERA [10],
addresses lighting variability and environmental shifts by
combining structural refinement with fixed domain-
adaptive features, allowing for more reliable mask
predictions under challenging conditions.

To address the limitations of these methods and
bring together geometric and semantic information, we
propose a two-stage framework for underwater object-
level depth estimation (Fig. 1). First, we introduce the
Segmentation-Augmented Differential Depth Estimation
Regressor (SADDER), a lightweight refinement module
that uses instance segmentation features to correct
residual errors in initial depth maps. Built on TRUDepth,
SADDER improves results in occluded areas and along
object boundaries by applying detailed corrections
guided by segmentation priors. Second, we present
UWSegDepth, an object-level method that combines
SADDER-refined depth maps with instance masks from
BARIS-ERA, assigning an average depth value to each
segmented object. We evaluate our approach on the
FLSea dataset [11], a diverse benchmark of shallow-
water scenes. Our method consistently performs better
than existing baselines in both shallow and full-depth
ranges, producing accurate depth estimates and clear
object separation from a single underwater image. The
main contributions of this work are summarized as
follows:

1)  We propose SADDER, a segmentation-augmented
depth refinement module that improves the depth
estimates produced by TRUDepth under
challenging underwater conditions.

2)  We introduce UWSegDepth, a lightweight method
that combines SADDER-refined depth with
BARIS-ERA instance masks to estimate object-
level depth without additional training.

3)  We demonstrate significant improvements on the
FLSea benchmark, both quantitatively and
qualitatively, under varying levels of visibility and
scene complexity.

2. RELATED WORK

The integration of depth estimation and instance
segmentation has demonstrated strong potential for
enhancing scene understanding, especially in challenging
environments. However, underwater applications remain
relatively underexplored due to the unique visual
degradation caused by light attenuation, scattering, and
low texture. In this section, we review two key areas of
related work: underwater depth estimation, and object-
level depth estimation in degraded visual environments.

2.1. Underwater Depth Estimation

Monocular depth estimation in underwater scenes
presents persistent challenges due to limited visibility,
optical distortions, and a lack of ground-truth data.
Traditional methods based on image formation models
are sensitive to physical assumptions and often fail under
changing environmental conditions. While recent
learning-based methods have shown notable progress,
accurate prediction remains difficult in complex or
degraded settings. For instance, classification-based
models incorporating spectral sensitivity and adaptive
discretization, such as UDepth [8] have improved
robustness in many scenarios. TRUDepth [9] further
addresses scale ambiguity by introducing sparse depth
constraints based on visual triangulation. Despite these
advances, most existing approaches rely solely on image
features without integrating object-level information,
which often leads to blurred depth boundaries and poor
generalization in scenes with occlusion or fine-grained
structure.
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Fig. 3. Architecture of the proposed Segmentation-Augmented Differential Depth Estimation Regressor (SADDER).
The model refines an initial depth map by predicting a residual correction using segmentation features.

2.2. Object-Level Depth Estimation

To bridge semantic and geometric understanding,
recent studies in terrestrial and low-light vision have
explored the integration of depth estimation and instance
segmentation. Methods such as Panoptic-DepthLab [4]
utilize a unified architecture to jointly predict
segmentation masks and depth maps, facilitating more
accurate 3D scene reconstruction and foreground-
background separation. In low-light environments,
models like Panoptic-LMFFNet [5] incorporate image
enhancement techniques and domain adaptation to
remain effective under varying illumination. These
methods often apply straightforward strategies, such as
averaging depth values within instance masks, to assign
object-level depth estimates. The results suggest that
integrating segmentation with geometric data enhances
occlusion handling, object-level distinction, and spatial
understanding. However, their application to underwater
environments remains underexplored.

3. PROPOSED METHOD

This section presents a framework for pixel-wise
and object-level depth estimation in underwater
environments. The method aims to improve monocular
depth estimation through semantic information and
extend depth inference to the object level. The framework
comprises two stages: segmentation-augmented depth
refinement using SADDER, and object-level depth
estimation based on dense predictions.

3.1. Segmentation-Augmented Depth Estimation

We build upon TRUDepth [9], a classification-
based monocular depth estimation model that employs
adaptive binning and a compact vision transformer
architecture. Although TRUDepth achieves competitive
performance under challenging underwater conditions, it
often fails to preserve geometric boundaries, particularly
in the presence of light scattering or occlusion.

To address these issues, we propose a novel
depth refinement module, SADDER (Segmentation-
Augmented Differential Depth Estimation Regressor),
which focuses on predicting the residual between the
initial depth estimate and the ground truth. As shown in
Fig. 2, SADDER takes three inputs: the initial predicted
depth map d;,;;, segmentation features F,, and deep
features F; from the encoder-decoder backbone. By

incorporating instance segmentation features into the
refinement process, the method enhances estimation
accuracy, particularly in regions affected by occlusion or
boundary ambiguity.

As illustrated in Fig. 3, these features are
concatenated and fed into a lightweight modified vision
transformer (mViT), which predicts the likelihood of
each pixel belonging to one of several differential depth
bins. These bins represent the deviation of depth values
from the initial estimate, encompassing both positive and
negative offsets. Based on the quantitative results of
TRUDepth [9], we observed that the per-pixel depth error
typically falls within 0.5 meters. Therefore, in our
implementation, the differential depth Ad is constrained
to a narrow interval of approximately [—0.5, +0.5] meters.
meters. This bounded range enables SADDER to refine
depth estimates effectively while reducing the risk of
large corrections that may lead to instability.

Subsequently, a softmax layer transforms the
predicted logits into probability scores p; over N
discrete bins, and the differential depth Ad is computed
as a weighted sum of differential bin centers c; using
these probabilities:

N
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This design enables precise, localized refinement of
the depth map by incorporating both segmentation priors
and spatial features, particularly in regions where
monocular depth estimation is intrinsically uncertain.
SADDER thus generates a differential depth map Ad,
which is applied as a correction to the initial estimate.
The final depth output is computed as:

~ ~

drefined = dinie + Ad (2)

This formulation allows the model to concentrate on
correcting systematic errors, particularly near object
boundaries or in visually complex regions where
monocular information may be insufficient. During
training, the parameters of the original TRUDepth model
are kept frozen. Only the SADDER module, including its
convolutional layers and the modified vision transformer
(mViT), is trained. This training strategy reduces
computational cost while ensuring that SADDER refines,
rather than overrides, the baseline depth estimates.
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Fig. 4. Overview of the UWSegDepth pipeline. Instance masks from BARIS-ERA and refined depth from SADDER
are combined to generate object-level depth estimates via spatial averaging.

To train SADDER effectively, we adopt a two-part
loss function that balances metric precision and structural
consistency, following the design in TRUDepth [9]. The
total loss is:

Liotar = A1 - Lrmse + A2 * LsiLog » 3

where 4; = 0.3 and A, = 0.6 control the contribution
of each term. The RMSE term encourages accurate per-
pixel predictions:

1 R 2
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while the SILog term ensures scale-invariant consistency:
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where g; = log(d;) —log(d;), f=10, A=1085.
This formulation is particularly effective in underwater
environments, where absolute depth may be unreliable
but structural information remains valuable.

3.2. UWSegDepth: Object-Level Depth Estimation

While SADDER improves pixel-wise depth
estimation, many downstream applications require
object-level spatial understanding rather than per-pixel
depth alone. Inspired by recent advances in terrestrial
vision [4, 5], we adopt a straightforward aggregation
scheme that combines refined depth maps with instance
segmentation results to estimate object-level depth. This
approach facilitates coherent spatial interpretation of
individual objects and their relative positions, which is
particularly advantageous for underwater tasks such as

autonomous navigation, ecological monitoring, and
marine robotics.

To achieve object-level depth estimation in
underwater scenes, we propose UWSegDepth, an object-
level depth estimation framework that integrates the
outputs of two previously introduced models: the
instance segmentation model BARIS-ERA [10] and the
depth estimation model TRUDepth refined with
SADDER. Instead of modifying existing architectures or
employing joint training, the proposed method applies a
post-processing procedure that combines semantic and
geometric information at the instance level.

As illustrated in Fig. 4, given an input image,
instance masks are obtained from BARIS-ERA, and a
dense depth map is generated by TRUDepth with
SADDER. For each object, its depth is computed by
averaging the pixel-wise depth values within its
corresponding segmentation mask:

dk = IMkl d(x»Y)» (6)

(X y)EM

Here, M, denotes the binary mask of the k-th
instance and d(x,y) is the predicted depth at pixel
(x,y) . Instances with insufficient valid pixels are
excluded to ensure numerical stability. This averaging
process is both computationally efficient and less
sensitive to local noise, producing spatially consistent
and metrically reliable object-level depth estimates.

The final output provides each segmented object
with both semantic labels and estimated distances,
facilitating structured scene interpretation. This modular
design allows for straightforward integration with other
segmentation or depth estimation methods, offering a
practical approach for object-level depth analysis in
underwater environments.
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Fig. 5. Qualitative comparison of depth estimation results on the FLSea dataset, showing that our method yields more

reliable predictions under challenging underwater conditions.

4. EXPERIMENTS

For underwater depth estimation, we conduct a
series of experiments on the FLSea dataset [11] to
evaluate the effectiveness of our proposed SADDER
module and UWSegDepth framework. This section
presents our experimental setup, quantitative and
qualitative results.

4.1. Dataset and Evaluation Metrics

Dataset. The FLSea dataset serves as the
benchmark for our evaluation. It contains 22,451 RGB-
depth image pairs collected from 12 shallow-water
environments, with depth typically ranging up to 10
meters. We follow the standard split introduced in prior
work [9], using 10 sites for training and 2 unseen sites
(u_canyon and sub_pier) for testing to ensure spatial
separation. Depth maps are generated using Agisoft
Metashape, a photogrammetric tool that reconstructs
metric depth from multi-view underwater footage. To
preserve natural underwater degradation characteristics,
we use the raw RGB images without color correction.

Evaluation Metrics. To evaluate the quality of the
predicted depth maps, we adopt a set of standard
quantitative metrics, following prior work [9]. All
metrics are computed over the test set and reported as
mean or median accuracy. The error metrics between the
predicted d and ground truth depth d are calculated as
follows:
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Table 1. Quantitative comparison with state-of-the-art methods
on the FLSea test set, reported using MEAN accuracy.

RMSE RMSE  RMSE
Range Meth MARE
g ethod (Linear)  (Log)  (SILog)

Full TRUDepth [9] 0.4711 0.0939 0.0924 0.0414
u

+Ours 04424 0.0885  0.0866  0.0396
TAIE Npurs 6.09%  575%  628%  4.35%
TRUDepth [9] 02108 00678  0.0667  0.0339
d<Sm +Ours 0.1877  0.0635  0.0612  0.0334
Dours 10.96%  6.34%  825%  147%
TRUDepth [9]  0.1119 00943 00584 00861
d<im +Ours 0.0895  0.0833  0.0510  0.0736
Aours 2002%  11.66%  12.67%  14.52%

N

. 1 X 2
RMSE, oy (d;,d;) = NZ(log(di)—log(di)), ©)

RMSEs;1,4(d;, d;) =
N

%Z (lOg(dAi) —log(d;) + a(di,di))z, (10)

l
where a(d;, d;) = %Z?’(log(di) —log(d;)) isthe term
that makes the error scale invariant [17].

4.2. Implementation Details

We build upon the TRUDepth architecture using a
MobileNetV2 [12] backbone and a pretrained vision
transformer. The SADDER module is trained using
PyTorch [13] on an NVIDIA Titan RTX GPU. Following
[14], we initialize SADDER with a zero-initialization
strategy to stabilize learning. The AdamW optimizer [15]
is used with a base learning rate of 107° and
exponential decay (factor 0.9). Batch size is set to 6. Data
augmentations include horizontal flips, brightness
scaling, color jitter, and depth scaling. For supervision,
200 sparse prior points are randomly sampled from multi-
view consistency to guide depth learning, accounting for
0.26% of pixels at 320 X 240 resolution.



Table 2. Quantitative comparison with state-of-the-art methods
on the FLSea test set, reported using MEDIAN accuracy.

RMSE RMSE RMSE
Range Meth MARE
& ethod (Linear) (Log) (SILog)

Full TRUDepth [9] 0.4235 0.0835 0.0826 0.0387
u

+Ours 03608 00771  0.0757  0.0365
TEGE Apurs 14.80%  7.66%  8.35%  5.68%
TRUDepth [9]  0.1933  0.0610  0.0605  0.0306
d<Sm +Ours 0.1658  0.0578  0.0557  0.0306
Dours 1423%  525%  7.93% 0%
TRUDepth [9]  0.0416  0.0442  0.0326  0.0298
d<1im +Ours 0.0302  0.0419  0.0326  0.0289
Aours 577%  5.20% 0% 3.02%

4.3. Quantitative Comparison

We evaluate our method on the FLSea test set
against the baseline TRUDepth [9] across three depth
intervals: Fullrange, d <5m, and d <1m. We
adopt four standard metrics: RMSE (Linear), RMSE
(Log), RMSE (SILog), and MARE. Both mean and
median performance are reported in Tables 1 and 2,
respectively.

As shown in Table 1, our method significantly
improves upon TRUDepth, particularly in shallow
regions where accurate estimation is most challenging.
We achieve up to 20.02% improvement in RMSE
(Linear) for depths less than 1 meter. The results indicate
that our segmentation-augmented refinement strategy
effectively corrects boundary errors and enhances
robustness in turbid conditions. Table 2 confirms the
stability of our approach. Our model improves the
median RMSE (Linear) by 14.80% in the Full range,
with consistent gains across all metrics.

A simple approach to improving underwater depth
estimation is to cascade an underwater image
enhancement (UIE) model with a depth estimation
network. To further examine the effectiveness of our
SADDER module, we compare it with this UIE-based
strategy using CCL-Net [16]. As shown in Table 3,
SADDER consistently outperforms the UIE baseline
across all depth intervals. While UIE may enhance image
appearance, it does not reliably improve depth accuracy.
In contrast, SADDER directly refines depth predictions
using segmentation priors, leading to more precise and
metrically consistent results.

These results demonstrate that SADDER is a
lightweight and effective enhancement for underwater
monocular depth estimation, achieving substantial
improvements with minimal increase in model
complexity and without requiring joint training.

4.4. Qualitative Results

Fig. 5 and Fig. 6 present visual comparisons of depth
predictions from TRUDepth and our SADDER-
augmented model. Our method yields sharper boundaries
and more structurally consistent depth transitions,
especially in regions affected by occlusion, scattering, or
low visibility. Compared to the baseline, SADDER better
preserves geometric contours and improves prediction

(a) Input (b) TRUDepth (c) Ours
Fig. 6. More qualitative comparison of depth estimation results
on the FLSea dataset.

Table 3. Comparison between our SADDER and UIE-based
strategy for enhancing underwater depth estimation on the
FLSea test set, reported using MEAN accuracy.

RMSE RMSE RMSE

Range Method MARE
& etho (Linear)  (Log)  (SILog)

Full  CCL-Net[16] 05015  0.1001 _ 00985  0.0448
range  SADDER 04424 0.0885  0.0866  0.0396
CCLNet[16] 02249 00731 00716 0.0372

d<5m  SApDER 01877  0.0635  0.0612  0.0334
CCLNet[16]  0.1119 00943 00584  0.0861

d<im  gippgr 0.0895  0.0833  0.0510  0.0736

environments,
of segmentation-

stability in degraded underwater
demonstrating the effectiveness
augmented refinement.

4.5. Object-Level Depth Estimation Results

We evaluate our UWSegDepth framework by
assigning mean depth values to segmented objects from
BARIS-ERA, enabling object-level spatial
understanding without additional training. As shown in
Fig. 7 and Fig. 8, this lightweight fusion yields
interpretable  depth  annotations across  diverse
underwater targets such as fish, reefs, and divers.
Compared to raw depth maps, our object-level outputs
provide clearer semantic boundaries and structured
spatial information. Despite the simplicity of mean
pooling, it proves effective for most scenarios and robust
to noise. This integration of SADDER and instance
fusion enhances both metric accuracy and semantic
interpretability, supporting downstream tasks like
obstacle assessment and marine habitat analysis.

4.6. Computational Efficiency

We evaluate the runtime of each component in the
UWSegDepth pipeline to assess its practicality for
deployment. As shown in Table 4, all measurements were
conducted on an NVIDIA Titan RTX GPU with a batch
size of 1, and results are reported in frames per second
(FPS). The full pipeline, including instance segmentation,
sparse depth prior generation, TRUDepth with SADDER
refinement, and object-level post-processing, runs at
0.327 FPS. While the current implementation is not
suited for real-time applications, it remains feasible for
offline processing or tasks where frame-wise analysis is
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Fig. 7. Qualitative results of our UWSegDepth. The integration of instance segmentation and depth prediction allows
for interpretable object-level depth estimation in underwater environments.

sufficient. To further improve computational efficiency,
future work may investigate model compression
techniques and optimized GPU-based implementations.

5. CONCLUSION

In this work, we present a unified framework for
underwater depth estimation and object-level scene
understanding. We first introduce the Segmentation-
Augmented Differential Depth Estimation Regressor
(SADDER), a lightweight refinement module that
improves monocular depth estimation by predicting
residual errors informed by instance segmentation
features. Built upon TRUDepth, SADDER enhances
accuracy, particularly near object boundaries and in
visually degraded regions, without substantially
increasing model complexity.

To bridge the gap between pixel-wise depth and
object-level reasoning, we propose UWSegDepth, an
object-level depth estimation framework that integrates
SADDER-refined depth maps with instance masks from
BARIS-ERA. By applying a simple mean aggregation
within each mask, UWSegDepth assigns representative
depth values to segmented objects. This efficient post-
processing approach improves geometric consistency
and semantic clarity, enabling accurate and structured
interpretation of underwater scenes.

Table 4. Runtime Analysis of UWSegDepth Components.

Method FPS
Perform Instance Segmentation 2.578
Get Depth Prior 0.376
Convert Depth Prior To Sparse Features 8.042
Perform Depth Estimation 66.281
UWSegDepth (Total) 0.327

Experimental results on the FLSea dataset
demonstrate the effectiveness of the proposed approach.
SADDER consistently improves depth accuracy under
challenging conditions, and the integration with instance
segmentation enables coherent object-level depth
estimation. Although the current runtime limits real-time
applicability, the framework remains suitable for offline
or low-frame-rate scenarios. The modular design offers a
robust and extensible solution for underwater perception,
with future work focusing on accelerating inference
while maintaining performance.
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