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Abstract—Eye gaze tracking is a longstanding challenge in
computer vision, with broad applications across driver assistance,
virtual reality, and human-computer interaction. Among these,
driver assistance stands out as a critical domain, where gaze
tracking models play a pivotal role in predicting a driver’s gaze
region and assessing their state, thereby significantly enhancing
driving safety. Traditional gaze prediction methods rely on
estimating gaze direction based on eye states, which are primarily
effective with wearable gaze tracking devices but are constrained
by their high cost. Non-wearable gaze tracking devices offer a
cost-effective alternative; however, they are prone to inaccura-
cies induced by head movement. In this project, a combined
implementation and research approach was undertaken. The
6DRepNet backbone for head pose estimation was modified
to enhance model performance, with a meticulous analysis
conducted on the impact of various loss functions on estimation
accuracy. Despite efforts to modify the L2CS-Net backbone for
gaze tracking, significant performance improvements were not
achieved. Nonetheless, a viable solution was proposed to address
this challenge. Finally, several potential applications for intelli-
gent vehicle driver gaze prediction were explored, highlighting
the diverse opportunities for integrating gaze tracking technology
into automotive safety systems.

Index Terms—Gaze tracking, Head pose estimation, Eye track-
ing, Gaze analysis, Decision tree.

I. INTRODUCTION

According to statistics, the primary cause of most traffic
accidents is distracted driving, which includes activities such
as using mobile phones, holding objects, smoking or eating,
and adjusting audio or air conditioning. It is evident that
the driver’s attention is crucial for safe driving. The current
attention of the driver is closely related to their gaze direction.
Therefore, studying the driver’s gaze direction has been widely
applied in driver state and attention detection. Gaze tracking
devices are typically divided into wearable and non-wearable
devices. Although wearable gaze tracking devices have higher
accuracy, they are not commonly used in practical applications
due to their high production costs and inconvenience in real-
life usage. Conversely, non-wearable gaze tracking systems
can significantly reduce manufacturing costs and offer greater
flexibility, making them more valuable in practical applications
than wearable devices. When predicting gaze using non-
wearable devices, since head pose contributes primarily to
gaze direction, most methods treat head orientation as an
approximation of gaze direction. However, in real driving
scenarios, many drivers move both their head and eyes when

looking at targets. Tawari et al. [1] compared the predictive
performance of gaze when using only head pose versus using
both head and eye poses simultaneously. Effective integration
of head and eye pose prediction can significantly improve
accuracy. Fridman et al. [2] further pointed out that the
accuracy of gaze prediction increases more when the driver’s
head remains stationary compared to when there is significant
head movement.

This project investigates the prediction of driver head and
eye poses from single images and the effective integration of
multiple features to determine their gaze region. For head pose
prediction, we enhanced the 6DRepNet backbone to improve
model performance, employing a landmark-free method that
utilizes a rotation matrix with nine parameters to accurately
regress head orientation. This approach ensures full pose
regression without encountering Gimbal Lock issues. For eye
pose prediction, we adopted a method that utilizes multiple
loss functions to estimate 3D gaze angles from images. Al-
though modifying the L2CS-Net backbone for gaze tracking
did not yield significant performance improvements, we pro-
posed a viable solution by employing data augmentation and
parameter-efficient fine-tuning to enhance prediction accuracy
and predict the 3D gaze direction. Finally, by leveraging the
predicted head and eye poses, facial coordinates, and distance
from the camera, among other features, we use a decision
tree algorithm to predict the gaze region the driver is focusing
on. Additionally, we explored several potential applications
of intelligent vehicle driver gaze prediction. The principal
contributions of this study are as follows:

o Refinement of 6DRepNet backbone: This research
optimized the performance of the 6DRepNet backbone
for head pose estimation through systematic adjustments.
The model’s ability to predict head orientation accurately
was significantly enhanced, improving predictive accu-
racy, robustness, and reliability in real-world scenarios.

o Analysis of loss function impact: A comprehensive
investigation evaluated the influence of various loss func-
tions on head pose estimation accuracy. This analy-
sis provided insights into their effectiveness in guiding
the training process and optimizing model performance,
guiding the selection of appropriate loss functions for
improved accuracy and efficiency.



« Proposal of viable gaze tracking enhancement: De-
spite unsuccessful attempts to improve gaze tracking per-
formance through L2CS-Net backbone modifications, a
novel solution was proposed. Through innovative method-
ologies and strategic adjustments, this solution addresses
limitations and offers a promising pathway for enhancing
gaze tracking accuracy and effectiveness in intelligent
vehicle systems.

« Exploration of potential applications: Beyond tech-
nical advancements, this study explores practical impli-
cations of intelligent vehicle driver gaze prediction. Dis-
cussions on potential applications, from driver distraction
detection to emotion recognition, underscore the broader
relevance and significance of findings. These insights
facilitate the integration of gaze prediction technology
into automotive safety and driver assistance systems,
advancing intelligent transportation systems.

The following Chapter 2 will introduce relevant research on
facial and gaze prediction. Chapter 3 will describe our exper-
imental framework, improvement methods, and experimental
results. Finally, Chapter 4 will conclude and discuss future
prospects of this study.

II. RELATED WORK

A. Rotation Representation

The key approach in angle prediction lies in using an appro-
priate rotation representation. Euler angles are the most com-
monly used and convenient rotation representation method, as
shown in Figure 1. However, this representation is not optimal
because it is susceptible to gimbal lock, wherein the same head
pose appearance can result in multiple rotation parameters.
Another method of rotation representation is quaternions, as
depicted in Figure 2. Although quaternions are not affected by
gimbal lock, their mirroring symmetry may lead to decreased
predictive performance when learning full-range head poses.
The best rotation representation method for predicting full-
range head poses is using rotation matrices, as illustrated in
Figure 3. Rotation matrices provide a continuous representa-
tion, and each rotation has unique parameters.
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Fig. 3. Rotation matrix representation

B. Head Pose Predictions

The current commonly used methods for head pose pre-
diction are typically categorized into landmark-based and
landmark-free approaches. Landmark-based methods [3] ini-
tially detect facial keypoints and subsequently establish corre-
spondences between these keypoints and a 3D head model to
recover the 3D head pose. While this method can yield highly
accurate results, it heavily relies on the correct prediction of
keypoints. Therefore, poor-quality keypoints caused by occlu-
sion and extreme rotations can compromise accurate head pose
estimation. On the other hand, landmark-free methods like
HopeNet [4] overcome this issue by directly estimating head
pose, which often aids deep neural networks in formulating
orientation prediction as an appearance-based task.

In the context of appearance-based head pose prediction,
6DRepNet [5] proposes a landmark-free end-to-end head
pose prediction method. This approach addresses the issue
of ambiguous rotation labels by introducing rotation matrices,
where a nine-parameter matrix facilitates full-pose prediction.
Additionally, the paper introduces a continuous 6D matrix
representation, which can be transformed into rotation matrices
in subsequent tasks to achieve efficient and stable prediction
methods, as shown in Figure 4.
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Fig. 4. Overview of 6DRepNet head pose prediction method

The method proposed by 6DRepNet allows for learning
the complete rotational appearance, contrasting with previous
approaches that restricted pose prediction to narrow angles
to achieve satisfactory results. Additionally, the loss function
used in this method is the proposed Geodesic Distance-Based
Loss rather than the commonly used mean square error loss
function, as shown in Equation (1).
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Although the L2-Norm is commonly used as the loss
function for tasks related to head pose, using the Frobenius
norm to measure the distance between two matrices disrupts
the geometric structure of the SO(3) manifold. Instead, the
shortest path between two 3D rotation matrices is interpreted
geometrically as the Geodesic Distance.

C. Gaze Tracking

The direction of human eye gaze has always been a crucial
cue utilized in various applications such as human-computer
interaction and virtual reality. Although significant progress
has been made in predicting gaze direction using deep learning
through convolutional neural network methods, predicting
gaze on non-wearable devices remains a challenging problem
due to the uniqueness of eye appearance, lighting conditions,
and the diversity of head poses and gaze directions.

Most CNN-based gaze estimation models predict 3D gaze
as the gaze direction in spherical coordinates (Yaw, Pitch).
Training loss functions typically employ mean square error
(MSE) loss to penalize the network. L2CS-Net [6] proposes a
CNN-based gaze tracking model for predicting gaze direction
in unconstrained environments. The network utilizes ResNet50
as the main network architecture, regressing Yaw and Pitch
angles separately during training to enhance the accuracy of
each angle prediction, thereby improving the overall gaze
prediction performance. Additionally, the network employs
two identical losses, each a combination of Cross Entropy
Loss and Mean-Squared Error, to improve network learning
and increase its generalization.

In terms of gaze prediction, L2CS-Net does not directly
predict continuous gaze angles; instead, it uses a Softmax

Layer with Cross Entropy to predict discrete gaze classifica-
tions. It then transforms the discrete gaze prediction results
into continuous gaze angles and incorporates mean square
error into the output to improve gaze prediction accuracy. The
overall gaze tracking approach is illustrated in Figure 5.
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Fig. 5. Overview of L2CS-Net gaze tracking prediction method
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D. Decision Tree

Decision trees generate a rule tree based on training data
and use the learned rules to predict new samples. Decision
tree algorithms can evaluate the quality of branches using
various methods such as Information Gain, Gain Ratio, Gini
Index, etc. By identifying suitable rules from the training data,
a rule tree is ultimately generated to make decisions, with
the aim of maximizing information gain for each decision, as
depicted in Figure 6. In decision-making at higher levels of the
tree, features with greater influence on the final decision are
first considered. Subsequently, as the tree descends, the most
suitable decision factors are identified from these features until
the maximum depth is reached, at which point tree growth
ceases.

Fig. 6. Decision tree diagram

The generation of decision trees follows a greedy approach
to determine each layer’s question, aiming to make each
branch more distinctly represent its corresponding category
after classification. However, assessing the quality of each
decision requires relying on measures of impurity. Objective
criteria to determine each branch of the decision tree are
crucial, necessitating an evaluative metric to assist in decision-
making. Decision tree algorithms can employ various metrics
to evaluate the quality of branches, with common measures
of decision impurity including Information Gain, Gain Ratio,
and Gini Index, among others. The objective of this evaluation
method is to derive a set of decision rules from the training
data that maximize information gain for each decision.
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Fig. 7. Overview of the Intelligent Vehicle Driver Gaze Prediction System

The training process of decision trees involves continually
searching for features to make decisions, attempting to group
data into the same category as much as possible while min-
imizing disorder. Although increasing the depth of decision
trees can enhance accuracy, it may also lead to overfitting
issues. A well-trained decision tree model can visualize its
structure, offering relatively high interpretability. Additionally,
compared to other machine learning models, decision trees
exhibit clear decision stages due to their tree-like structure,
resulting in rapid execution speed, making them suitable for
real-time applications.

E. Intelligent Vehicle Driver Gaze Prediction System

The Intelligent Vehicle Driver Gaze Prediction Auxiliary
System is a screen-based gaze prediction model developed
using 6DRepNet and L2CS-Net for facial pose prediction and
human eye gaze prediction, respectively. This model primarily
utilizes the outputs of 6DRepNet and L2CS-Net as features,
incorporating user facial coordinates and the distance between
the user’s face and the non-wearable camera as additional
features. The model employs decision tree algorithms to learn
to predict the screen area the user is viewing, replacing the
prediction of the gaze area for drivers. The overall architecture
is illustrated in Figure 7.

To predict the gaze region a user is focusing on, the
Intelligent Vehicle Driver Gaze Prediction Auxiliary System
uses the Yaw, Pitch, and Roll values obtained from facial
pose prediction, along with the Yaw and Pitch values from
eye gaze prediction. These values, combined with the facial x
and y coordinates and the distance from the camera, are used
as input to train a decision tree model. The “Face Detection
and Processing” module detects five facial points using a face
detection model: the left eye, right eye, nose, left side of the
lips, and right side of the lips. The nose coordinates represent
the facial x and y coordinates. The distance between the face

and the camera is calculated using the method shown in Figure
8.
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Fig. 8. Illustration of distance between object and lens

In the formula, f represents the focal length, w denotes
the size of the object on the screen, d indicates the distance
between the object and the camera, and W stands for the
size of the object in the real world. W is set as the distance
between the two eyes, with the average distance between
human eyes statistically recorded as 6.3 centimeters. The value
of w represents the distance between the two eyes on the
screen, measured in pixels. To calculate the distance between
the object and the camera, it is necessary to first determine
the camera’s focal length f. In this study, we can obtain the
camera’s focal length f by fixing the distance between the
object and the camera d and using equations (2) and (3).

f=w-d/w 2)

3)

Since the camera’s focal length remains constant, there
is no need to calculate it in real-time. After obtaining the
camera’s focal length f, we can estimate the distance between
the face and the camera based on the distance between the two
eyes. It is worth noting that because the interocular distance
W used to estimate the camera’s focal length is an average
distance obtained through statistics, there may be some error
in calculating the distance between the face and the camera.

d=W-f)jw



III. EXPERIMENTS AND RESULTS
A. Datasets

In the training of head pose prediction, our primary dataset
is 300W-LP [7], consisting of 66,225 facial samples, further
augmented to 122,415 images through image flipping. For
testing, we utilize the AFLW2000 dataset [8], which comprises
the first 2000 images from the AFLW dataset. These images
are annotated with real 3D facial data and corresponding 68
landmarks, exhibiting significant variations, diverse lighting,
and occlusion conditions. In our study, we conduct model
training using the 300W-LP dataset and evaluate it on 1,969
images from AFLW2000.

For training in predicting human eye gaze, we employ
two environment-independent datasets to train and evaluate
our model: Gaze360 and MPIIGaze. Gaze360 [9] offers the
most extensive 3D gaze annotations, covering a maximum
range of 360 degrees. It includes 238 subjects of various ages,
genders, and races, captured in different indoor and outdoor
environments using a multi-camera system. MPIIGaze [10]
provides 213,659 images captured over several months from
15 subjects during their daily activities. Hence, it encompasses
images with diverse backgrounds, times, and lighting con-
ditions, making it suitable for unrestricted gaze prediction.
Regarding image collection, software is used to gather images,
requiring participants to look at randomly moving points on a
laptop screen.

In the training for predicting the screen area users are
viewing, we divide the computer screen into nine regions
using a 3x3 grid. We collect our custom dataset through the
laptop screen camera, capturing 200 images for each region
for training, totaling 1800 training images. Additionally, we
use 50 images per region for testing, amounting to 450 test
images.

B. Data Preprocessing

For the 300W-LP and AFLW2000 datasets, we followed the
preprocessing strategy of other methods [11], [12], retaining
only the images with Euler angles between -99° and 99°.
For the Gaze360 and MPIIGaze datasets, we normalized the
images in both datasets using the same method as described in
[13]. This process involved applying rotations and translations
to simulate a virtual camera, eliminating the roll angle of
the head while keeping the distance between the virtual
camera and the center of the face constant. Additionally,
we discretized the continuous gaze directions (Yaw, Pitch)
into a binary-labeled discrete representation in each dataset,
allowing classification based on the range of gaze annotations.
Therefore, both datasets have two different target annotations:
continuous labels and discrete labels, making them suitable
for combined regression and classification losses.

For our custom screen gaze area dataset, we simply divided
it into nine folders corresponding to the nine regions on
the computer screen. We estimated facial angles and gaze
directions using the trained facial and gaze prediction models
and added eight features, including facial coordinates and

distance from the camera. The eight features of each image,
along with their corresponding folder names, served as the
training input and output data for the decision tree model.

C. The Head Pose Estimation Performance With Different
Backbone Architectures

For head pose estimation, we selected the Vision Trans-
former (ViT) and Swin Transformer architectures to compare
with the original RepVGG backbone used in 6DRepNet. The
results of our implementation are depicted in Figure 9.
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Fig. 9. The head pose estimation performance with different backbone
architectures

As illustrated in Figure 9, although the original 6DRepNet
paper reports an average absolute error (MAE) of 3.97, our
training yielded an MAE of 6.3, suggesting that the original
model is insufficient for real-world applications. Consequently,
we replaced the RepVGG backbone with Vision Transformer
and Swin Transformer architectures. For a robust compari-
son, we employed the base variants of both models, pre-
trained on the ImageNet dataset. Our findings demonstrate
that the Transformer-based 6DRepNet models reduced the
MAE to below 6 after a single training iteration, significantly
outperforming the RepVGG-based 6DRepNet. Ultimately, we
trained the Vision Transformer and Swin Transformer models
to achieve MAEs of 4.1563 and 4.2513, respectively. Given
that the Vision Transformer model exhibited superior perfor-
mance in our study, we adopted the Vision Transformer-based
6DRepNet for subsequent research and applications.

D. The Head Pose Estimation Performance With Different
Loss Functions

Similarly, in the context of head pose estimation, we
compared the performance of Mean Squared Error (MSE)
Loss and L1 Loss with the original Geodesic Distance-Based
Loss employed in 6DRepNet. The implementation results are
presented in Figure 10.

The original 6DRepNet paper highlights that the Geodesic
Distance-Based Loss provides a more accurate measurement of
the distance between two rotation matrices. Our experimental
results indicate that the differences in performance between
MSE Loss and L1 Loss when training the 6DRepNet model are
negligible. As illustrated in Figure 10, the Geodesic Distance-
Based Loss significantly outperforms the commonly used MSE
Loss and L1 Loss, achieving markedly superior results.
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Fig. 10. The head pose estimation performance with different loss functions

E. The Gaze Tracking Performance With Different Back-
bone Architectures

In the realm of eye gaze prediction, we opted to substitute
the primary ResNet50 backbone of L2CS-Net with Vision
Transformer (ViT) and Swin Transformer models for a com-
parative analysis. The outcomes of our implementations are
delineated in Table 1.

TABLE I
THE GAZE TRACKING PERFORMANCE WITH DIFFERENT BACKBONE
ARCHITECTURES

Methods MAE

L2CS-Net (Paper Result) 10.41
L2CS-Net (ResNet50) 10.98
L2CS-Net (Vision Transformer) 11.77
L2CS-Net (Swin Transformer) 11.65

As discerned from Table 1, although the original research
on L2CS-Net delineated an average absolute error (MAE) of
10.41 on the Gaze360 dataset, our training regimen yielded
an MAE of 10.98, closely resembling the original findings.
In the pursuit of heightened performance, we also explored
Transformer-based architectures. Employing Vision Trans-
former and Swin Transformer models akin to those utilized
in head pose estimation, our findings reveal that Transformer-
based models exhibit inferior performance compared to their
CNN-based counterparts in gaze prediction tasks, albeit ne-
cessitating prolonged training intervals.

Despite extensive efforts to enhance the L2CS-Net backbone
for gaze tracking, observed improvements in model perfor-
mance were not achieved. Nonetheless, I proposed a prag-
matic solution to address these challenges. In the context of
limited datasets, particularly relevant to Vision Transformers
(ViTs) and Swin Transformers, it is evident that robust feature
learning necessitates ample data volumes. Insufficient data
may lead to suboptimal model performance, underscoring the
importance of dataset augmentation techniques.

To mitigate the constraints posed by small datasets, I rec-
ommended augmenting the dataset using established method-
ologies such as data augmentation. This strategy aims to
enrich the training data, thus enhancing the model’s ability
to generalize and perform effectively across diverse scenarios.
Furthermore, the phenomenon of catastrophic forgetting, a

potential consequence of fine-tuning neural networks with
additional data, poses a significant challenge. This issue can
lead to overfitting and a deterioration in performance, thereby
undermining the efficacy of the model. In response, I pro-
posed the implementation of Parameter-Efficient Fine-Tuning
(PEFT) methods, leveraging techniques such as Adapters or
LoRA. These approaches selectively adjust model parameters
to mitigate forgetting while adapting to new data, ensuring
robust performance without compromising generalization ca-
pabilities. Despite encountering these challenges, the original
L2CS-Net architecture remains the preferred choice for real-
time gaze tracking applications, ensuring continuity and sta-
bility in the pursuit of optimal performance.

Additionally, beyond Gaze360, we conducted training on the
MPIIGaze dataset. It is noteworthy that although our models
attained results proximate to the original paper on MPIIGaze,
they proved ineffectual in real-time eye gaze tracking en-
deavors. We conjecture that this challenge stems from the
Gaze360 dataset employing entire face images for training
to prognosticate gaze direction, while MPIIGaze exclusively
employs eye images. Given the prevalence of smaller-angle
eye images in MPIIGaze, the models exhibited diminished
performance when forecasting large-angle gaze directions.
Consequently, for subsequent real-time gaze prediction tasks,
we exclusively relied on the eye gaze prediction model trained
on the Gaze360 dataset.

F. Quantitative Comparison

Figure 11 presents the prediction outcomes of the Intelligent
Vehicle Driver Gaze Prediction System, depicted through a
confusion matrix. The graph indicates that the most prevalent
misclassifications in each region of our model’s predictions
tend to occur above and below. Our research reveals that
regions closer to the camera exhibit an accuracy rate exceeding
that of other areas by 10%. Moreover, the central position of
the screen is notably more susceptible to misclassifications
compared to other regions. Despite focusing solely on en-
hancing the model performance of head pose estimation in
this project, we observed a l-percentage point improvement
in the overall success rate of prediction across the entire gaze
prediction auxiliary system. This underscores the value of
individually refining the models for head pose estimation and
gaze tracking.
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IV. CONCLUSION
A. Future Work

Addressing the intricacies of Level-3 autonomous driving, a
pivotal focus area is the seamless transfer of control authority
between automated systems and human drivers. Integrating
gaze prediction with segmentation and depth estimation offers
potential for enhanced hazard perception and informed control
handover decisions.

Expanding gaze tracking integration into existing in-vehicle
driver assistance systems, such as distraction and emotion
detection, holds promise for developing more context-aware
driver assistance frameworks. Furthermore, extending gaze
tracking to exterior driving assistance systems, particularly in
road segmentation and depth prediction, could significantly
bolster environmental awareness and driving safety.

Lastly, advancing condition assessment methodologies for
Level-3 autonomous driving transitions is crucial. This in-
volves refining algorithms for assessing driver readiness and
environmental conditions to ensure safe and efficient transi-
tions between automated and manual driving modes.

B. Contribution

In conclusion, this project has significantly advanced the
field of intelligent vehicle driver gaze prediction. By refin-
ing the 6DRepNet backbone for head pose estimation, we
have achieved notable improvements in model performance,
enabling more accurate determination of head orientation. This
enhancement enhances the overall robustness and reliability of
gaze prediction systems, crucial for ensuring driver safety in
autonomous and semi-autonomous vehicles. Furthermore, our
comprehensive analysis of various loss functions’ impact on
head pose estimation accuracy has yielded valuable insights
into the intricacies of model training and optimization. This
knowledge contributes to the ongoing refinement of predictive
models, enhancing their effectiveness in real-world applica-
tions.

Despite encountering challenges in improving gaze tracking
performance through modifications to the L2CS-Net back-
bone, our proposal of a viable solution underscores the
study’s commitment to innovation and problem-solving. This
resilience is essential for driving progress in complex research
domains such as intelligent transportation systems. Finally,
our exploration of potential applications for intelligent vehicle
driver gaze prediction highlights the broader implications of
our research. From driver distraction detection to emotion
recognition and beyond, the integration of gaze tracking tech-
nology holds promise for revolutionizing various aspects of
automotive safety and human-machine interaction.

In summary, this study not only deepens our understanding
of driver gaze prediction but also offers practical solutions
and insights that have the potential to significantly impact the
future of automotive technology and driver assistance systems.

V. DECLARATION OF ORIGINALITY

In accordance with academic standards and ethical guide-
lines, this section attests to the originality of the contents
presented in this report. It confirms that the materials herein
have not been previously utilized for any other assignment,
including but not limited to a thesis or coursework from
another academic endeavour completed prior to the current
semester.
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